
Pinpointing Hidden IoT Devices via
Spatial-temporal Traffic Fingerprinting

Xiaobo Ma∗†, Jian Qu∗†, Jianfeng Li∗‖, John C.S. Lui‡, Zhenhua Li§, Xiaohong Guan∗†
∗MOE Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an, China

†Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
‡Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong

§School of Software, Tsinghua University, Beijing, China
‖Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Email: xma.cs@xjtu.edu.cn, qj904154277@stu.xjtu.edu.cn, jfli@sei.xjtu.edu.cn, cslui@cse.cuhk.edu.hk,

lizhenhua1983@tsinghua.edu.cn, xhguan@xjtu.edu.cn

Abstract—With the popularization of Internet of Things (IoT)
devices in smart home and industry fields, a huge number of IoT
devices are connected to the Internet. However, what devices are
connected to a network may not be known by the Internet Service
Provider (ISP), since many IoT devices are placed within small
networks (e.g., home networks) and are hidden behind network
address translation (NAT). Without pinpointing IoT devices in
a network, it is unlikely for the ISP to appropriately configure
security policies and effectively manage the network. In this paper,
we design an efficient and scalable system via spatial-temporal
traffic fingerprinting. Our system can accurately identify typical
IoT devices in a network, with the additional capability of
identifying what devices are hidden behind NAT and how many
they are. Through extensive evaluation, we demonstrate that the
system can generally identify IoT devices with an F-Score above
0.999, and estimate the number of the same type of IoT device
behind NAT with an average error below 5%. We also perform
small-scale (labor-intensive) experiments to show that our system
is promising in detecting user-IoT interactions.

I. INTRODUCTION

There is an increasing number of Internet of Things (IoT)

devices in the world. The total installed base was 15.4 billion in

2015, and is expected to be 30.7 billion in 2020 and 75.4 billion

in 2025 [1]. Because of their sheer volume and weak security,

IoT devices have become the target of hackers. In recent years,

the rapid development of botnets for IoT devices like Mirai

and Turii has caused great security risks [2], [3]. As reported,

a botnet of IoT devices can even launch coordinated attacks

to bring down a power grid [4]. After the vulnerability of an

IoT device is discovered, it usually takes a longer time to fix

it than that of personal computers. The updates of IoT devices

require the user’s consent, but many users do not pay much

attention to these update alerts. This leads to the continual

operation of many vulnerabilities in IoT devices, and attackers

may penetrate the network through these vulnerabilities.

The huge number of IoT devices has also brought a signifi-

cant problem. That is, the Internet Service Provider (ISP) finds

it difficult to determine what IoT devices are connected within

its administrative domain. Without pinpointing IoT devices in a

network, it is unlikely for ISPs to perform security maintenance

and effectively manage the network, e.g., appropriately config-

uring personalized security policies according to IoT devices’

vulnerabilities, and allocating security resources based on IoT

devices’ population distribution.

Detecting IoT devices can be achieved in two approaches.

One is actively probing and identifying the services that IoT

devices open to the Internet. The other is passively finger-

printing the traffic of IoT devices. The active probing is

currently adopted by many security companies and researchers.

However, this approach has limited visibility of IoT devices in

at least two aspects. First, most IoT devices are placed within

small networks (e.g., home networks) and are hidden behind

network address translation (NAT). Thus, their services may

only be visible within a subnet and are completely invisible
outside the network. Second, although some IoT devices may

use globally-routable IP addresses and are visible outside

their residing networks, their open services may not contain

sufficient information that can facilitate unique identification.

Although the active probing enables ISPs to probe IoT devices

outside their managed networks, this is not their first priority.

In contrast, the passive approach overcomes the limitations

of the active probing because it can observe the traffic from/to

all IoT devices. Fig. 1 depicts the scenario of passively

detecting IoT devices from an ISP’s perspective. An ISP

accommodates network services for numerous local networks.

Each local network (e.g., home network) connects to the ISP

via routers/gateways. Within a local network, different devices

(e.g., computers, laptops, and IoT devices) connect to the

local routers/gateways for accessing the Internet. Our aim is

to perform traffic fingerprinting between the ISP and local

networks so to answer the following research questions (RQ).

RQ1. Is it possible to extract IoT traffic features and train a

detection model to identify a given type of IoT device from

an ISP’s perspective?

RQ2. When multiple IoT devices of the same type are

deployed behind the same IP address (i.e., NAT), how to

determine the number of such IoT devices?

Answering the above research questions is not easy. The

major challenges are two-fold. The first challenge is learning-

testing asymmetry. Specifically, one can collect (pure) traffic

traces as training samples and learn the traffic patterns of an

IoT device in a (clean) controlled testbed. However, when ISPs

···
Home router

/Gateway

Target IoT
 device

Endpoints

Local network ISP

··· ······

Internet Service
Provider

Wired/Wireless
connection

Training
Set

Feature extraction

Model building Results
camera

Time IP Device State Number
12:44
12:46

idle···
··· ··· ···

Detection
Model

ISP

2
···

Fig. 1. An ISP’s perspective of passively detecting IoT devices.

subsequently test the learned traffic patterns in their managed

networks for detecting IoT devices, they may not be able to

extract (pure) traffic traces as testing samples. The reason

is that many devices are deployed behind NAT, making all

devices (e.g., PCs and smartphones) behind NAT share the

same IP address. The extracted traffic traces associated with

such an IP address then become a mixture of traffic traces

produced by different devices. Therefore, ISPs have no idea

which traces constitute a pure testing sample. The second

challenge is that simple features like external IP addresses that

IoT devices contact are not reliable because they may change

across networks due to content delivery network (CDN). More-

over, these simple features may not work in detection as many

different IoT devices use the same cloud services.

To address these challenges, we design a system for detect-

ing typical IoT devices via spatial-temporal traffic fingerprint-
ing. The basic idea is to automatically extract short-term com-

mon subsequences of packet arrivals (i.e., sequence profiles)

that appear relatively frequent, and meanwhile learn the long-

term appearance relationships of all the extracted sequence

profiles through the convolutional neural network (CNN). The

sequence profiles hierarchically abstract specific packet-level

features, and can describe the spatial context of packets (i.e.,

which packets with abstracted features frequently coexist with

each other in a certain sequence). Incorporating the contextual

information with hierarchically abstracted features enables our

system to be accurate in pinpointing IoT devices even in a

complicated network environment such as NAT.

To our best knowledge, we are the first to passively detect

hidden IoT devices from an ISP perspective. Our contributions:

• We design an efficient and scalable system for IoT detec-

tion via spatial-temporal traffic fingerprinting. Our system

can accurately identify typical IoT devices in a network,

with the additional capability of identifying what devices

are hidden behind NAT and how many they are.

• Our system can hierarchically extract spatial-temporal

features of the traffic between IoT devices and their

servers automatically. It has a low detection time complex-

ity (i.e., almost linear to the number of packets) and works

in an online fashion, thereby scalable to large networks

and identifying IoT devices usually in just a few minutes.

• Through extensive evaluation in a network with nearly

TABLE I
IOT DEVICES UNDER INVESTIGATION (YOM : YEAR OF MANUFACTURE).

Device Name (Abbr.) Function Manufacturer YoM
DuSmart Speaker (DS) Speaker Baidu 2018
Mijia Camera SXJ02ZM (MC) Camera Xiaomi 2018
Lecoo Camera R1 (LC) Camera Sharetronic 2018
Ezviz Plug T30 (EP) Plug Espressif 2017
Amazon Echo (AE) Speaker Amazon 2014
DingDong Smart Speaker (DP) Speaker Grandway 2016
Mijia Plug (MP) Plug Xiaomi 2017
Mi AI Smart Speaker (MS) Speaker Xiaomi 2017
Dropcam (DC) Camera Dropcam 2013
HP Envy Printer (HP) Printer HP 2013
Netatmo Weather Station (NS) Weather Netatmo 2012
Netatmo Welcome (NW) Camera Netatmo 2012
PIX-STAR Photo-frame (PP) Photo-frame AMPAK 2015
Samsung SmartCam (SS) Camera Samsung 2014
Smart Things (ST) Hub Samsung 2013
Day Night Cloud Camera (DN) Camera TP-LINK 2015
Smart Plug (SP) Plug TP-LINK 2016

3,000 users, we demonstrate that our system can generally

detect IoT devices with an F-Score above 0.999, and

estimate the number of the same type of IoT device behind

NAT with an average error below 5%. We also detect

several user-IoT interactions and obtain promising results.

Roadmap. In Sec. II, we present IoT traffic characteristics.

Sec. III elaborates system design and Sec. IV evaluates it. We

review the literature in Sec. V and conclude in Sec. VI.

II. UNDERSTANDING IOT DEVICES AND THEIR TRAFFIC

CHARACTERISTICS

To understand the behavior of IoT devices, we collect and

analyze the traffic traces of 17 typical IoT devices. The traffic

traces come from two sources. One is via our testbed where

we capture the traffic traces of 8 IoT devices. The other is a

public dataset published by the University of New South Wales

[5], offering us the traffic traces of 9 additional IoT devices.

We detail these IoT devices’ names, functions, manufactures,

and year of manufacture (YoM) in Table I. Note that all IoT

devices under investigation are Internet-enabled through WiFi.

A. Three States of Typical IoT Devices

IoT devices, once turned on, have three possible states, i.e.,

initialization, idle, active. Their states are used to categorize

the underlying types of activities of an (online) IoT device.

1) Initialization: Before using a new IoT device, one needs

to configure the parameters of the device, and the configura-

tions depend on the specific function. A new IoT device then

enters the initialization state upon the first time it connects

to the server. Some major tasks of such initialization include

WiFi settings, authentication, and app-device binding.

2) Idle: At the idle state, no functional task is executed by

the device, but heartbeat traffic takes place over a persistent

connection between the device and the server. Consequently,

most devices remain sending and receiving packets which

constitute the idle-state traffic.

3) Active: When one interacts with an IoT device (e.g.,

voices and videos control, commands from mobile apps), the

IoT device is updating its firmware, or a scheduled-task comes

to execution, the device is in an active state and produces

 0

 25 TCP UP

 0

 23 TCP DOWN

 0

 9 UDP UP

 0

 2

 0 300

UDP DOWN

N
um

be
r o

f P
ac

ke
ts

Time (s)

(a) Mi AI Smart Speaker

 0

 8 TCP UP

 0

 6 TCP DOWN

 0

 2 UDP UP

 0

 1

 0 300

UDP DOWN

N
um

be
r o

f P
ac

ke
ts

Time (s)

(b) Amazon Echo

 0

 143 TCP UP

 0

 88 TCP DOWN

 0

 4 UDP UP

 0

 4 UDP UP

 0

 3

 0 300

UDP DOWN

N
um

be
r o

f P
ac

ke
ts

Moving Human Detection

Time (s)

(c) Mijia Camera

 0

 5

 0

 5 TCP UP

 0

 3 TCP DOWN

 0

 3 TCP DOWN

 0

 1 UDP UP

 0

 1

 0 300

UDP DOWN

N
um

be
r o

f P
ac

ke
ts

Power ON Power OFF

Time (s)

(d) Ezviz Plug

Fig. 2. The number of packets varies over time for four IoT devices in the view of four filters (i.e., TCP UP, TCP DOWN, UDP UP, and UDP DOWN).

active-state traffic. A device is active when it is running certain

tasks exclusive of those during initialization. For example,

when one interacts with a smart speaker via voices, the smart

speaker responds to voice commands and thus becomes active;

Amazon Echo is considered active during the process of

receiving and executing the commands from the mobile app.

B. IoT Traffic Characteristics

As different tasks are executed, an IoT device transits from

one state to another. Note that the initialization state is tran-

sient, the idle state is the default state, and the active state only

appears when a device is executing tasks. Therefore, one can

expect that 1) the idle-state traffic is persistent; 2) the active-

state traffic is abrupt and task-dependent (i.e., the character-

istics may vary for executing different tasks). Throughout the

whole life cycle of an IoT device, the initialization state may

appear only a couple of times, resulting in pretty sparse traffic

samples available in real-world network monitoring. Therefore,

we focus on the idle-state/active-state traffic characteristics.

The idle-state traffic is attributed to the persistent connection

between the IoT device and the server. When a user remotely

controls the device, he/she will issue commands from his/her

mobile phone. The commands are relayed by the server through

the persistent connection to the device. The persistent connec-

tions of IoT devices differ from each other in terms of packet

arrivals. In Fig. 2, we demonstrate how the number of packets

extracted by four filters (i.e., TCP UP, TCP DOWN, UDP UP,

and UDP DOWN) varies over time, where the width and the

height of each bar denote one second epoch and the number

of packets in that epoch, respectively. We observe that the four

devices exhibit different packet arrival patterns, but all patterns

comprise regular and irregular ones.

Fig. 2(a) and Fig. 2(b) depict the idle-state traffic pattern of

Mi AI Smart Speaker and Amazon Echo, respectively. It can

be observed that the former produces significant TCP and UDP

traffic, while the latter primarily produces TCP traffic, in both

directions. Despite being idle, both devices have significant

irregular packet arrivals under certain filters (e.g., UDP traffic

of Amazon Echo, TCP traffic of Mi AI Smart Speaker).

When user activities are triggered, the idle-state traffic

will be interleaved with the active-state traffic. Fig. 2(c) and

Fig. 2(d) depict the idle-state traffic with the active-state traffic

of Mijia Camera and Ezviz Plug, respectively. We see that the

two devices mainly produce TCP and UDP traffic, respectively.

The blue bars represent the traffic produced by user activities.

Such occasional occurrences of user activities (e.g., Moving

Human Detection and Power ON/OFF) result in the idle-state

traffic patterns being temporarily interfered.

Besides packet arrivals that characterize IoT traffic from the

temporal perspective, we also use protocol-specific features

encapsulated in packet headers, such as protocol type and

packet length, to provide spatial information to understand

IoT traffic characteristics. Fig. 3 is a Sankey diagram of

Amazon Echo traffic (42,818 packets collected in 24 hours).

The diagram contains statistics of protocols, addresses, ports,

etc. We see that Amazon Echo communicates with diverse

protocols, a large number of local/external server IP addresses,

and distinct ports offering various services. Protocol-specific

features enable us to distinguish between the same type of IoT

devices of different firmware versions. For example, DuSmart

Speaker produced in Apr. 2019, compared to that in Sep. 2018,

incorporates Simple Service Discovery Protocol and reduces

the request frequency of Network Time Protocol.

Fig. 3. Sankey diagram of Amazon echo traffic. Bars from left to right
represent device name, WAN or LAN, protocol, server IP address, and port.
“None” means that the protocol ICMP has no port.

C. Challenges for Bridging Characteristics and Detection

The IoT traffic characteristics presented above reveal that

(temporal) packet arrivals and (spatial) protocol-specific fea-

tures contain rich information in support of identifying the

presence of IoT devices and distinguishing between different

types of IoT devices. At first glance, exploring certain signif-
icant and regular traffic characteristics to detect IoT devices

may be an obvious approach. For instance, one could easily

leverage the UDP DOWN patterns of Mi AI Smart Speaker

and Mijia Camera demonstrated in Fig. 2(a) and Fig. 2(c) via

spectrum analysis of periodic signals. However, such patterns

are not necessarily unique, thereby resulting in false positives.

To reduce false positives, one may correlate the patterns in

the view of the four filters in Fig. 2. Unfortunately, an internal

IP address, which may represent an IoT device, a non-IoT

device, or many devices behind NAT, may contact numerous

external server IP addresses. One has no prior knowledge of

which internal IP addresses host only one device and which

ones host more than one device. Accordingly, whether the

external server IP addresses that an internal IP address contacts,

in whole or in part, serve for a certain IoT device is agnostic.

Therefore, grouping the traffic associated with an internal IP

address in the view of the four filters becomes challenging.

One may further combine the observed set of external server

IP addresses that an IoT device contacts in a controlled testbed

so to reduce the combinational space. Nevertheless, matching

the set external server IP addresses may necessitate observing

the inbound-outbound traffic in a monitored network until

most external server IP addresses are contacted. Although

achieving this may not be time-consuming in a controlled

testbed, observing most external server IP addresses in a

monitored network requires a real-life user to trigger all related

functions of an IoT device, which may take a long period of

time (e.g., 24 hours). This long period of time severely limits

the timeliness of IoT detection, not to mention that it introduces

additional storage cost. Worse still, a long period of time of

observation may not result in successfully matching the set of

external server IP addresses in the presence of CDN.

The detection becomes more challenging with the prevalence

TABLE II
SUMMARY OF MAJOR NOTATIONS.

Notation Definition
v feature vector extracted from one packet
vi(k) the kth element of feature vector i
B packet burst
Ba

j the jth feature vector in packet burst a

S sequence profile
N(S) the occurrence number of S
V (S) the importance value of S
L (·) longest common subsequence function
D (·) distance function between two vectors
I(·) abstraction function between two vectors

of public services. An increasing number of IoT devices

use public services, such as https://api.amazon.com/.

These public services are also simultaneously used by many

other applications. Even in the case of a private service, a series

of different IoT devices of the same manufacturer tend to use

the same private service. The detection is further complicated

by the fact that many IoT devices are connected behind NAT,

drastically raising the detection complexity because all devices

behind NAT produce traffic originated from and destined to the

same IP address from an ISP’s perspective.

III. SYSTEM DESIGN

To tackle the challenges for bridging traffic characteristics

and IoT detection, we use the following design objectives.

First, a comprehensive approach that can characterize different

IoT devices in a complicated network environment is required.

Second, although an IoT device may occasionally have simple

yet unique features such as external IP addresses (and domain

names) that it contacts, when these features are not used, the

system can also work well to ensure its general suitability to

all types of devices. Third, to minimize training overhead, user

intervention should be kept at a minimum when the system is

learning the traffic characteristics of IoT devices.

Following the above design objectives, we propose the

system architecture in Fig. 4. In training stage, we capture and

label traffic for each IoT device. We keep IoT devices in idle

state without user intervention, thereby making the collection

and labeling of traffic for training highly automated. We then

mix the collected idle-state traffic of each IoT device with the

background traffic (consisting of non-IoT traffic and the traffic

of the remaining IoT devices). Spatial-temporal features of the

mixed traffic are extracted by the IoT traffic feature learning

module. In detection stage, the IoT detection engine identifies

IoT devices and estimates their numbers in real-world traffic.

Table II lists major notations defined in our system.

A. Hierarchical Feature Extraction

IoT traffic exhibits significantly repeating patterns and some

packet sequences occur frequently. Such packet sequences

can be informative in IoT detection because they contain not

only the information of individual packets, but also the short-

term sequential structure of packet arrivals. Inspired by this

observation, our system hierarchically extracts sequence profile

(SP) as features from packet sequences as shown in Fig. 5.

SP Matching

SP Generation
& Selection

0/Number

CNN Models for IoT Detection

 IoT Traffic Feature Learning Module IoT Detection Engine

Idle-state IoT Traffic
Matching an SP

Training Testbed

Mixed
Traffic

Background Traffic
Matching an SP

···

IoT Detection Enginegg
Real-world Traffic

0

SP1 SP2

SP3
Ezviz Plug

Capturing
IoT traffic

Amazon Echo

WiFi
Router

··· Amazon Echo
Ezviz Plug

Time IP Device Number
12:44
12:46

···
···

2
1···

Background Traffic

Idle-state IoT Traffic

B d TB kB ffi

Idl ffil I T TT

1

0

Temporal Representation of
SP Matching

Matched
or Not

gg

CCC

Internet
Ezviz Plug

Amazon Echo ··· 0/Number0

···

Fig. 4. The system architecture of detecting IoT devices and estimating their numbers (SP: Sequence Profile).

1) Packet Vectorization: For each packet, we only extract

its header information as its application-layer payload may be

encrypted and processing the payload is time-consuming. At

the network layer, we extract fields in the IP header including

Times to Live (TTL), total length, and protocol flag. The

TTL value depends on networking system implementation of

IoT devices, and could be a discriminative feature. Protocol

flag indicates which transport protocol (i.e., UDP or TCP) is

employed, and we transform it into a binary value. At the

transport layer, we extract flags, window size, options, and

payload length in the TCP header, and only payload length in

the UDP header. Using these cross-layer header information,

we represent each packet by a packet vector (PV). Table III

summarizes PVs of different packets.

2) Packet Burst Extraction: The traffic between an IoT

device and the server comprises packet bursts. Each packet

burst results from a certain semantic network activity, such as

time calibration. To capture such activities, we group packets

into bursts. The time interval between two adjacent bursts

should not be less than one second (i.e., Interval of Bursts

in Table V). Packet bursts are denoted by B1, B2, . . . , Bn. As

shown in Fig. 5, each burst, say B1, is sequentially represented

by the PVs of packets (i.e., Packet 1 and Packet 2).

3) Sequence Profile Generation: We generate the longest

common subsequence of two bursts as a Sequence Profile

(SP). To extract such subsequences, we define the distance

between two PVs. For two PVs of different protocols, we

define their distance to be infinite. For two PVs pertaining

to the same protocol, the distance is the summation of the

distances between their counterpart elements. Formally, the

distance between two PVs, vi and vj , of Packets i and j is

D (vi, vj) =

len(vi)∑
k=1

min {wkDe (vi(k), vj(k)) ,mk} , (1)

where len(·) calculates the vector length, wk is the weight of

the kth field of vi (or equivalently vj), De (vi(k), vj(k)) is the

distance between the counterpart elements of vi and vj , and

mk is the maximum value of De (vi(k), vj(k)). For a field in

a PV, the distance metric can be either binary or digital. If the

distance metric of the kth field needs exact matching, we have

De (vi(k), vj(k)) =

{
0, vi(k) �= vj(k),

1, vi(k) = vj(k).
(2)

Otherwise, we compute the digital distance

De (vi(k), vj(k)) = |vi(k)− vj(k)|. (3)

After defining the distance between two PVs, we extract the

longest common subsequence of two bursts, say Ba and Bb,

based on dynamic programming [6], [7]. Assume that Ba =
(va1 , v

a
2 , . . . , v

a
na
) and Bb = (vb1, v

b
2, . . . , v

b
nb
), with na and nb

PVs, respectively. Let Ba
i (resp. Bb

j) be the sequence consisting

of the first i (resp. j) PVs of Ba (resp. Bb). We denote by

L (i, j) the longest common subsequence of Ba
i and Bb

j . Then,

we have L(na, nb) represent the longest common subsequence

of Ba and Bb. L(na, nb) can be recursively derived as follows

L (i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅, if i = 0 or j = 0,

L (i− 1, j − 1) � [I (vi, vj)],
if i, j > 0 and D (vi, vj) < d,

max(L (i, j − 1) , L (i− 1, j)),
if i, j > 0 and D(vi, vj) ≥ d,

(4)

where A � [b] means that b, as a new element, is added to the

end of sequence A, d is a manually selected distance threshold

discriminating the proximity of two PVs, and I(vi, vj) is

a function to compute an abstracted representation of two

(similar) PVs vi and vj . Such an abstracted representation

reflects whether the kth element of I(vi, vj) is unique or could

be “Any” value. Formally, the kth element of I(vi, vj) is

I(vi, vj)(k) =

{
vi(k), vi(k) = vj(k),

Any, vi(k) �= vj(k).
(5)

For every two bursts Ba and Bb, we obtain one longest

common subsequence L(na, nb) as an SP.

4) Sequence Profile Selection: For some IoT devices, such

as smart plugs, there are usually fewer than 10 different SPs.

For other devices, there may be hundreds of different SPs. If

all the SPs are used as features, though not impossible, huge

computation overhead would be introduced in both training and

detection. Fortunately, according to measurement in Sec. IV,

only a few informative SPs are needed to characterize an IoT

device. Therefore, we only select informative SPs as features.

At first glance, term frequency-inverse document frequency

(TF-IDF), commonly used in NLP [8], can be a candidate

selection method. However, TF-IDF is not suitable for our

problem because SPs with high TF-IDF may be scarce

in IoT traffic and cannot be used to estimate the number

of IoT devices. The scarcity of SPs will also enlarge the

None

3nS

Packet 1

Packet
Vectorization

Packet Burst
Extraction

Sequence
Profile
Generation

UDP, 1, 255, 32

1. UDP, 1, 255, 32

··· 1. UDP, 1, 255, 32

Packet 2 Packet X

···

···

···

1B
2B

nB

1S
1

2
n n

S1. TCP, 1, 128, 24, PSH, ACK, Any, NOP
2. TCP, -1, Any, 1075, ACK, 28400, NOP

TCP, 1, 128, 24, PSH, ACK, 1687, NOP TCP, -1, 98, 1075, ACK, 28400, NOP

1. TCP, 1, 128, 24, PSH, ACK, 1687, NOP
2. TCP, -1, 98, 1075, ACK, 28400, NOP 1. TCP, 1, 128, 24, PSH, ACK, 2122, NOP

2. TCP, -1, 92, 1075, ACK, 28400, NOP

···

······
······

Sequence
Profile Selection

1. TCP, 1, 128, 24, PSH, ACK, Any, NOP
2. TCP, -1, Any, 1075, ACK, 28400, NOP ··· 1. UDP, 1, 255, 32

SP1 SP10

Fig. 5. An example of generating SPs via hierarchical feature extraction.

detection time window. As an alternative method, we define the

importance of an SP by combining its temporal frequency and

spatial generalizability, i.e., frequency of occurrences in all SPs

derived from every two bursts and the number of its elements

with a value of “Any”. Formally, we define the importance as

V (S) =
√
N(S)×

len(S)∑
j=1

len(vj)∑
i=1

δ
(
vji

)
, (6)

where S is an SP, N(S) is the frequency of occurrences of S,

vj is the jth element of S, vji is the ith element of vj , and

δ (x) is an indication function

δ (x) =

{
0 if x =Any,

1 if x �=Any.
(7)

B. IoT Device Detection and Population Estimation

Our system makes use of SPs to detect IoT devices and

estimate their population (i.e., the number of IoT devices of

the same type). Individual SPs can only reflect the short-

term sequential and spatial characteristics of a certain network

activity. To characterize the long-term temporal patterns of

network activities, we search in the mixed traffic, as shown in

Fig. 4, for the (generated and selected) SPs. Then, a temporal

representation of SP matching, in the form of a 3D (time–SPs–

match or not) space, is generated. This representation incor-

porates the SPs that form different signal channels describing

diverse aspects of IoT traffic, hence being able to characterize

the spatial-temporal correlation across network activities.

To search for the SPs in the mixed traffic, we transform

all packets in the mixed traffic into PVs, and match them

against the SPs. For each SP, the output is a one-dimensional

array describing the matching results along the time axis. The

matching here is essentially the string subsequence matching.

The only difference is that we need to count the number of SP

matching based on the matched or not information. When one

subsequence of PVs is matched with an SP, the number of SP

matching will be increased by one at the time window where

the subsequence begins. Fig. 6 shows examples of SP matching

over DuSmart Speaker’s traffic and background traffic.

By leveraging the SP matching representation, we choose

CNN to detect IoT devices and estimate their population. The

reason why we employ CNN is that it can automatically extract

long-term patterns of individual SPs and spatial-temporal cor-

relation across different SPs [9]–[11]. Our CNN model consists

of 3 convolution layers, 3 pooling layers, 2 fully connected

layers. The input of the first convolution layer is time arrays

corresponding to the selected SPs. To avoid over-fitting of

neural networks, we apply the dropout layers [12], [13]. During

training, if we just detect whether the target device is in the

traffic, we use the softmax and cross-entropy loss function.

If we want to know the number of the target device, we use

the Rectified Linear Unit (ReLU) and MSEloss function to

calculate it, as is more computationally intensive. Therefore,

to ensure the scalability of our system, we train two CNNs for

each IoT device. One is for detection and works continuously.

The other is for population estimation and is only launched

upon successful detection of the target IoT device.

To train the above two CNNs, we need to build positive and

negative samples with ground truth. Considering that IoT traffic

may be interleaved by background traffic, we mix IoT traffic

with background traffic as positive samples, and background

traffic itself as negative samples. Denote IoT traffic by Ti,

and background traffic by Tb. Then, training samples can be

expressed as: Fc(Tb) = 0 and Fc(Tb+n⊗Ti) = 1, where Fc is

our CNN classifier for IoT device detection, and n⊗Ti denotes

the superposition of the target device’s traffic for n times. An

output of 0 and 1 represent the absence and presence of the

target device, respectively. To estimate the number of the target

device, training samples are expressed as Fe(Tb+n⊗Ti) = n,

where n denotes the number of the target device, and Fe is

the regression model for population estimation.

C. User-IoT Interaction Detection

We detect user-IoT interactions by labeling the active-state

traffic for each action and representing the active-state traffic

as SPs. Compared to inspecting IoT devices based on idle-state

traffic without user intervention, collecting active-state traffic

is labor-intensive since one needs to repeat the same type of

interaction many times, especially those interactions relying

on physical contact with IoT devices. For example, triggering

moving human detection function of Mijia Camera requires

people moving in front of the device. Second, a certain user-

IoT interaction commonly induces a limited number (typically

one) of packet bursts within a short period of time. To simplify

the feature representation of such packet bursts, we extract

SPs between every pair of packet bursts induced by repeating

the user-IoT interaction many times, and in turn abstract these

extracted SPs into one SP via dynamic programming in (4).

However, the computational complexity of dynamic pro-

gramming increases drastically with the number of extracted

SPs grows. We use an approximate algorithm to sequentially

merge the extracted SPs. Specifically, the algorithm merges

two SPs as a new SP by extracting their longest common

subsequence, and recursively merges this new SP with more

SPs until the final SP matches all packet bursts. The merging

order is important. If we start by merging two random SPs,

it is likely to lose useful information or even get an empty

result. Instead, we start by merging SPs with high values of V
defined in (6), which outperforms random merging.

IV. EVALUATION

We evaluate the performance of our system in IoT device

identification, population estimation, user-IoT interaction de-

tection, and analyze its scalability in practical deployment.

A. Dataset Collection and Preprocessing

The data includes IoT traffic and background traffic. The IoT

traffic was from our testbed and a public dataset published

by the University of New South Wales [5]. The target IoT

devices are listed in Table I. To further collect high-quality

background traffic, we must ensure the statistical diversity of

the background traffic. Moreover, the background traffic cannot

contain any traffic of the target IoT devices. To fulfill these

requirements, we deliberately build the background traffic

using the traffic before the wide prosperity of IoT. Specifically,

the background traffic, with a size of 1.1TB, was captured

on the border of our campus network from Nov. 9th to Nov.

11th, 2015. It is associated with 2,952 unique IP addresses and

all of them are distributed in students’ apartments. It can be

reasonably considered that the background traffic contains little

traffic generated by the target IoT devices because 1) the target

IoT devices produced after 2015 are impossible to appear in

the background traffic collected in 2015 and 2) other devices

are generally not used in students’ apartments of our campus.

For each IoT device, we extract (idle-state) packet bursts,

generate SPs, and select (informative) SPs to represent its

traffic characteristics. The number of selected SPs is upper

bounded by 10 (i.e., Maximum SP Number in Table V). Then,

we match selected SPs against positive and negative traffic

samples. The aim is to obtain time arrays corresponding to

selected SPs, where each time array depicts how the number

of SP matching (of a certain SP) varies over the time windows

(i.e., CNN Time Window in Table V). These time arrays can be

directly fed into CNN models for IoT training and detection.

Fig. 6 exemplifies time arrays of matching SPs of DuSmart

Speaker against positive and negative traffic samples. We see

that time arrays for positive samples are regular with occasional

irregularity, while those for negative samples are abrupt and

irregular. In this example, for ease of demonstration, we

build positive samples using pure idle-state traffic of DuSmart

Speaker, and negative samples using background traffic.

(a) DuSmart Speaker traffic (positive) (b) Background traffic (negative)
Fig. 6. Time arrays of matching SPs against positive/negative traffic samples.

In practice, positive and negative traffic samples for generat-

ing time arrays for an IoT device, say X , are built in two steps.

First, we randomly select IoT devices other than X , blend their

traces into background traffic, and get negative traffic samples.

Then, we add the traces of X to negative traffic samples, and

obtain positive traffic samples. Such steps fully consider that

the traffic of a certain IoT device may be interleaved by that of

all other devices. Tables IV and V list our parameter settings.

Table IV is for calculating the distance between two PVs in (1),

where Weight and Max mean wk and mk, respectively. Table V

includes parameters including maximum SP number, distance

threshold d, interval of bursts, and training parameters.

B. Results and Insights
1) IoT Device Detection: Fig. 7 shows precision and recall

for all devices in Table I. We use 50GB background traffic

in training and the rest in testing, and calculate precision

and recall for the traffic traces within each 360-second time

window. Fig. 7(a) is the results using our default features

without the information of domain name, IP address and port,

while Fig. 7(b) shows the results after adding these information

into our system. We observe that the performance is not

improved when domain name, IP address and port is added,

implying that our system does not rely on these features.
Precision and recall of most devices are greater than 99.9%.

Netatmo Weather Station and PIX-STAR Photo-frame have

high precision but relatively low recall. This is because for

these two devices the time interval between two consecutive

packets is larger than the CNN time window. We can simply

increase recall to 99% by increasing the CNN time window.
Both precision and recall increase as the detection time

proceeds. Further, we want to know the minimum time for suc-

cessfully detecting IoT devices. We test the detection response

time for all devices (i.e., the time lag between an IoT device

being connected and the successful detection) with the F-Score

larger than 0.99. Table VI presents the detection response time

rounded up to one minute. We see that most IoT devices can

be detected in just a few minutes after they are connected.

Answer to RQ1: We profile each IoT device using idle-

state traffic characteristics, and represent spatial-temporal

features in a CNN-resolvable form. We can accurately detect

IoT devices with F-Score above 0.999 in just a few minutes.

2) IoT Device Population Estimation: To perform popula-

tion estimation (i.e., estimate the number of the same type of

IoT devices behind NAT), we mix the device’s traffic multiple

times to simulate the scenario of multiple devices are behind

NAT. Note that the range of the estimated number in testing

is the same as that in training. If the actual number is outside

this range, our system can still estimate a number. However,

the error would be uncontrollable. We perform population

estimation for all IoT devices with a maximum number of

100, and the average error is less than 5%. Fig. 8 shows the

results of two particular IoT devices. The X-axis represents

the actual number, and the Y-axis is the estimated number. We

see that the two numbers are pretty close when we vary the

actual number. For a certain device, our observation is that the

error increases as the actual number grows. Estimation errors

also differ across different devices. Normally, IoT devices with

complicated traffic patterns tend to have large estimation errors.

TABLE III
FEATURES USED FOR DIFFERENT PROTOCOLS.

Protocol Features
TCP Time, Protocol, Direction, TTL,

Payload Length, TCP Flags, TCP
Window Size and TCP Options.

UDP Time, Protocol, Direction, TTL
and Payload Length.

Others The same as UDP.

TABLE IV
DISTANCE PARAMETERS BETWEEN TWO PVS.

Feature Algorithm Weight Max
Direction Exact Matching 4 4
TTL Digital Distance 0.5 2
Payload Length Exact Matching 2 2
TCP Flags Exact Matching 2 2
TCP Window Digital Distance 0.005 2
TCP Options Exact Matching 1 1

TABLE V
TRAINING PARAMETER SETTINGS.

Parameters Value
Maximum SP Number 10
Distance Threshold d 2.5
Interval of Bursts 1s
CNN Time Window 360s
CNN Leaning Rate 0.0005
Training Algorithm Adam

 0
0.2
0.4
0.6
0.8

 1

DS MC LC EP AE DP MP MS DC HP NW NS PP SS ST DN SP

Precision Recall

(a) Without the information of domain name, IP address and port

 0
 0.2
 0.4
 0.6
 0.8

 1

DS MC LC EP AE DP MP MS DC HP NW NS PP SS ST DN SP

Precision Recall

(b) With the information of domain name, IP address and port
Fig. 7. Precision and recall of IoT device detection.

TABLE VI
DETECTION RESPONSE TIME FOR IOT DEVICES.

Device Time (min) Device Time (min) Device Time (min)
DS 1 MC 1 LC 2
EP 2 AE 4 DP 1
MP 1 MS 2 DC 1
HP 2 NW 1 NS 13
PP(DN) 12(2) SS(SP) 1(4) ST 2

Answer to RQ2: We can accurately estimate the number of

IoT devices of the same type behind NAT with the average

error less than 5%.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
Actual Number

(a) Amazon Echo

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
Actual Number

(b) Mijia Plug

Fig. 8. Scatter plot of estimated/actual numbers for IoT devices behind NAT.

3) User-IoT Interaction Detection: We repeat a certain

user-IoT interaction multiple times to collect traffic samples.

The samples are divided into training samples and testing

samples for generating SPs and calculating recall, respectively.

To compute precision, we introduce two additional sets of

traffic samples exclusive of the target user-IoT interaction,

namely, traffic samples of other user-IoT interactions and traffic

samples collected in the idle state. Our experiments involve two

IoT devices: Ezviz Plug (EP) and Mijia Camera (MC). For each

device, we manually trigger all its user-IoT interactions except

those that do not generate traffic or are difficult to repeat (e.g.,

firmware updating). Each interaction is repeated 50 times to

collect training and testing samples with a ratio of 1:4.

Table VII lists the user-IoT interactions, along with detection

precision, recall, and F-Score. We see that the results are

promising since we can identify most interactions with a high

F-score. In particular, the “Turn on/off power” interaction of

EP can be accurately identified. However, the traffic of “Turn

TABLE VII
THE PERFORMANCE OF USER-IOT INTERACTION DETECTION.

Device User-IoT Interaction Precision Recall F-Score
EP Turn on/off power 1.00 0.98 0.99
MC Turn on/off moving detection 0.5 1.00 0.67

Moving detection 1.00 0.95 0.97
User connection 1.00 1.00 1.00
Sleep mode change 0.69 0.98 0.81

on power” is the same as that of “Turn off power”. Admittedly,

we cannot distinguish between them without inspecting the

application-layer content, but at least we can identify the

power on-off state transition of EP. We face the same situation

when detecting “Turn on/off moving detection” of MC, but

accurately detecting other interactions like “Moving detection”

indicates that moving detection has already been turned on.

C. Scalability Analysis in Practical Deployment

As we train CNN models separately for each device before-

hand, the scalability of our system mainly depends on the de-

tection stage. The detection includes two computation-critical

tasks, namely, CNN model processing and SP matching. CNN

model processing does not consume too many computational

resources, especially when the number of model parameters is

small (less than 20MB of memory usage under our settings).

The main computational cost is attributed to SP matching.

The time complexity of SP matching is O(pq), where p is the

number of packets, and q is the length of an SP. Since q is

a constant in detection, the time complexity of our system is

almost linear to the number of packets. Therefore, our system

is competent at large-scale deployment.

During training, there is no need to observe the traffic of

an IoT device for a very long period of time so to generate

SPs. Thus, the training time, along with the needed size of

IoT traffic, is limited. As shown in Fig. 9(a), we generate SPs

in different time periods for Amazon Echo. As time proceeds,

the number of SPs becomes larger. If we use the SPs to match

all the original packets, we derive the ratio of SP coverage

to represent the proportion of the original packets that can be

characterized by these SPs. We see that the number of SPs

increases smoothly and (almost) constantly, while the ratio of

SP coverage grows very slowly after an initial rapid climb. That

is, the marginal utility of generating SPs to characterize the

original packets is drastically reduced after the initial period

(e.g., 30 minutes or one hour). As shown in Fig. 9(b), the

SPs of the x-axis are arranged in ascending orders of their

importance defined in (6). Mijia Plug (MP) has only 9 different

SPs, and the first SP characterizes 95% of the original packets.

DuSmart Speaker (DS) induces more than 1,900 different SPs

in one hour, and 10 of them characterize over 35% of the

original packets. Although 35% is not high, using only 10 SPs

still achieves excellent detection performance.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 10800
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

N
um

be
r o

f S
Ps

 (N
)

Ra
tio

 o
f S

P
co

ve
ra

ge
 (R

)

Time (s)

N
R

(a) Temporal order

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 30

Ra
tio

 o
f S

P
co

ve
ra

ge

Number of SPs

EP
MP
DS
DP

(b) Ascending order of importance
Fig. 9. The trend of the ratio of SP coverage as the number of SPs increases
in temporal order and in ascending order of their importance.

When our system is deployed in large-scale networks, train-

ing CNN models for each device separately is favorable. For

instance, no more than 5 SPs are sufficient to represent Ezviz

Plug’s behavior without undermining detection performance.

The packet time intervals of PIX-STAR Photo-frame exceeds

360 seconds, and one needs to increase the CNN time window.

All these customized operations reduce computational over-

head while assuring or even improving detection performance.

V. RELATED WORK

With the prosperity of IoT, traffic fingerprinting is gradually

leveraged for detecting IoT devices. For example, Amar et

al. disclosed the feasibility of detecting IoT devices through

traffic fingerprinting by case studies [15]. They did not build

a detection system. Yang et al. implemented an IoT discovery

system through actively probing the IPv4 space [16]. However,

many devices residing behind NAT limit the application scope

of their system. Acar et al. revealed that, when a user behind

NAT occasionally accesses a phishing website with DNS

rebinding scripts, IoT devices behind the same NAT can be

fingerprinted [17]. Such vulnerability-based methods are not

general and are unlikely to be adopted in network management.

Several studies built machine learning based passive traffic

fingerprinting systems for detecting IoT devices. According to

the learning algorithms, they can be categorized into feature-

based and deep learning-based studies. Feature-based studies

craft traffic feature vectors, and then employ supervised clas-

sification algorithms to conduct training and testing [18]–[21].

Deep learning-based studies use raw data as input. Then, CNN

and Recurrent Neural Network (RNN) are used to automati-

cally generate features and make the classification [22], [23].

These studies have confirmed that passive traffic fingerprinting

empowers the network manager to accurately identify IoT

devices [5], [18]–[20], [22]–[24]. For example, Bezawada et al.

extracted 20 features, including entropy and header features,

for each packet and obtained consistently good results [19].

Meidan et al. designed a session based classifier [20]. Jafari

et al. collected physical layer information from several ZigBee

devices and achieved detection with neural networks [22].

Our work is fundamentally different. Existing studies, such

as [5] and [15], have an underlying assumption: each observed

IP address just hosts a single (IoT) device. Given a period

of traffic traces associated with an IP address, their model

categorizes the traces into only one class (i.e., one IoT device).

However, it is pretty common for IoT devices to be deployed

behind NAT, generating complicated traffic sharing the same IP

address. Naturally, a period of traffic traces associated with an

IP address should be categorized into one or more classes. The

underlying assumption makes existing studies practical only in

limited scenarios. Additionally, existing studies may require the

training/testing traffic traces to be split into separate samples,

hence not well suited to the continuously arriving traffic.

Eliminating the underlying assumption and prerequisite, we

aim to detect IoT devices from an ISP’s perspective. When

designing our system, we consider the common fact that many

IoT devices are hidden behind NAT and the traffic’s contin-

uous arriving property. Besides just detecting the presence of

IoT devices, we can accurately estimate their numbers, and

detect user-IoT interactions, in an online fashion without the

need to explicitly split traffic traces. Extensive experiments

proved the effectiveness of our system. Although Thangavelu

et al. developed a distributed device fingerprinting technique

(DEFT) from an ISP’s perspective [25], DEFT requires control

over routers, and necessitates extensive router configurations.

Therefore, its scalability and immediate availability are limited.

VI. CONCLUSION

Motivated by the fact that many IoT devices are placed

behind NAT and hidden to network administrators, we make

the first effort towards passively pinpointing hidden IoT de-

vices from an ISP perspective. Our system can accurately

identify IoT devices, estimate their numbers, and detect user-

IoT interactions via spatial-temporal traffic fingerprinting, even

when devices are hidden behind NAT. Extensive evaluation

showed that our system can generally identify IoT devices with

an F-Score above 0.999, and estimate the number of the same

type of IoT device behind NAT with an average error below

5%. The system can scale up to large networks and work in

an online fashion (identify IoT devices in just a few minutes

after they are connected) because of its indispensability to user

intervention during training and low time complexity during

detection. In the future, we will further explore our system’s

potential in detecting user-IoT interactions.

ACKNOWLEDGEMENT

This work was supported in part by National Natural Science

Foundation (61972313, U1736205, U1766215, 61822205), Na-

tional Key R&D Project (2016YFB0901900), Postdoctoral Sci-

ence Foundation (2019M663725), CCF-NSFOCUS KunPeng

Research Fund, of China. The work by John C.S. Lui was

supported in part by the GRF 14201819.

REFERENCES

[1] “Internet of Things (IoT) connected devices installed base worldwide
from 2015 to 2025 (in billions).” https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/, 2019.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, 2017.

[3] A. O. Prokofiev and Y. S. Smirnova, “Counteraction against Internet of
Things botnets in private networks,” in Proc. IEEE EIConRus, 2019.

[4] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT botnet of high
wattage devices can disrupt the power grid,” in Proc. USENIX Security,
2018.

[5] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying IoT devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, 2018.

[6] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, 1977.

[7] C. Bepery, S. Abdullah-Al-Mamun, and M. S. Rahman, “Computing a
longest common subsequence for multiple sequences,” in Proc. IEEE
EICT, 2015.

[8] K. Chen, Z. Zhang, J. Long, and H. Zhang, “Turning from TF-IDF to
TF-IGM for term weighting in text classification,” Expert Systems with
Applications, 2016.

[9] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG
classification by 1-D convolutional neural networks,” IEEE Transactions
on Biomedical Engineering, 2016.

[10] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time
motor fault detection by 1-D convolutional neural networks,” IEEE
Transactions on Industrial Electronics, 2016.

[11] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional neural networks for speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2014.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The Journal of Machine Learning Research, 2014.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[15] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley, and A. Crabtree,
“An analysis of home IoT network traffic and behaviour,” arXiv preprint
arXiv:1803.05368, 2018.

[16] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting of IoT
devices in the cyberspace,” Computer Networks, 2019.

[17] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-
based attacks to discover and control local IoT devices,” in Proc. ACM
IoT S&P, 2018.

[18] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and
D. Sicker, “Passive data link layer 802.11 wireless device driver fin-
gerprinting.” in Proc. UNISEX Security, 2006.

[19] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,
“Iotsense: Behavioral fingerprinting of IoT devices,” arXiv preprint
arXiv:1804.03852, 2018.

[20] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “ProfilIoT: a machine learning approach
for IoT device identification based on network traffic analysis,” in Proc.
ACM SAC, 2017.

[21] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “IoT Sentinel: Automated device-type identification for
security enforcement in IoT,” in Proc. IEEE ICDCS, 2017.

[22] H. Jafari, O. Omotere, D. Adesina, H.-H. Wu, and L. Qian, “IoT Devices
Fingerprinting Using Deep Learning,” in Proc. IEEE MILCOM, 2018.

[23] S. Aneja, N. Aneja, and M. S. Islam, “IoT Device Fingerprint using
Deep Learning,” in Proc. IEEE IOTAIS, 2018.

[24] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for Internet of Things,” IEEE Access, 2017.

[25] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy, “DEFT: A Distributed IoT Fingerprinting Technique,” IEEE
Internet of Things Journal, 2018.

